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Abstract

Data parallel languages such as Vienna Fortran and HPF can be successfully applied
to a wide range of numerical applications. However, many advanced scientific and
engineering applications are of a multidisciplinary and heterogeneous nature and thus
do not fit well into the data parallel paradigm. In this paper we present new Fortran 90
language extensions to fill this gap. Tasks can be spawned as asynchronous activities
in a homogeneous or heterogeneous computing environment; they interact by sharing
access to Shared Data Abstractions (SDAs). SDAs are an extension of Fortran 90
modules, representing a pool of common data, together with a set of methods for
controlled access to these data and a mechanism for providing persistent storage. Our
language supports the integration of data and task parallelism as well as nested task
parallelism and thus can be used to express multidisciplinary applications in a natural
and efficient way.
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1 Introduction

Data parallel languages, such as High Performance Fortran (HPF) [8] and Vienna Fortran

[13, 51, are maturing and can readily express the parallelism in a broad spectrum of scientific

applications. In this sense, data parallel languages have proven highly successful.

However, scientific and engineering applications are a moving target. With the antici-
pated arrival of teraflop architectures, the complexity of simulations being tackled by scien-

tists and engineers is increasing exponentially. Many of the new applications are multidis-

ciplinary: programs formed by pasting together modules from a variety of related scientific

disciplines. Such multidisciplinary programs raise a host of complex software integration

issues, in addition to parallel performance issues. HPF, and its siblings, are completely

inadequate for this class of applications.

Environmental simulation is one area in which such applications are beginning to arise.

One might wish to couple a variety of environmental models, each given initially as separate

programs:

1. A plant biology model for the Florida Everglades

2. A model of the gulf stream dynamics

3. A climate model for North America

4. A solar radiation model

The goal is then to interconnect these disparate models into a single multidisciplinary model
subsuming the original models and their interactions. At the same time, the parallelism both

within and between the discipline models needs to be exposed and effectively exploited.
Precisely analogous issues arise in multidisciplinary optimization. In designing a mod-

ern aircraft, for example, one has a wide variety of interacting disciplines: aerodynamics,

propulsion, structural analysis and design, controls, and so forth. An optimal engineering

design is necessarily an admixture of suboptimal designs in each discipline. The essential

goal is to correctly couple a sequence of complex scientific and engineering programs from

different disciplines, each designed and implemented by different groups, into a coherent

whole capable of effective multidisciplinary optimization. Moreover, the collection of pro- 0
grams chosen must remain flexible, since the choice of programs tends to evolve rapidly as 0

the simulation methodology changes, or as unanticipated interactions force alteration of the

mix of disciplines or programs being used.
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In attempting to carry out such multidisciplinary design, scientists are confronted with a

host of complex software engineering issues, together with the necessity of effectively map-

ping the resulting unwieldy codes to a heterogeneous network of workstations and massively

parallel architectures. In this environment, statically forming a "task graph" and coupling

tasks via message plumbing appears virtually unworkable. In a message-passing environ-

ment, the design of each task requires intimate knowledge of the behavior of all coupled

tasks. Given a rapidly evolving mix of program modules, as will occur in many multidisci-

plinary applications, a more flexible software environment appears critical.

Our approach is designed to address this problem. It provides a software layer on top of

data parallel languages, designed to address both the "programming in the large" issues, and

the parallel performance issues arising in complex multidisciplinary applications. A program

executes as a system of tasks which interact by sharing access to a set of Shared Data

Abstractions (SDAs). SDAs generalize Fortran 90 modules by including features from both

objects in object-oriented data bases and monitors in shared memory languages. The idea

is to provide persistent shared "objects" for communication and synchronization between

large grained parallel tasks, at a much higher level than simple communication channels

transferring bytes between tasks.

Tasks in our system are asynchronously executing autonomous activities to which re-

sources of the system are allocated. They may embody nested parallelism, for example by

executing a data parallel HPF program, or by coordinating a set of threads performing dif-

ferent functions on a shared data set. Moreover, the system of tasks associated with an

application may execute in a homogeneous or heterogeneous environment.

A set of tasks may share a pool of common data by creating an SDA of appropriate type,

and making that SDA accessible to all tasks in the set. Using SDAs and their associated

synchronization facilities also allows the formulation of a range of coordination strategies for

these tasks. The combination of the task and SDA concepts should form a powerful tool

which can be used for the hierarchical structuring of a complex body of code and a concise

formulation of the associated coordination and control mechanisms.

The structure of this paper is as follows. The next section provides an overview of

task management, while Section 3 presents the data abstractions required for sharing data

between the tasks. Section 4 describes a multidisciplinary application, the optimal design of

an aircraft, and shows how it would be programmed using the language features described

in this paper. This is followed by a section on related work and a brief set of conclusions.
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2 Tasks

Tasks are spawned by explicit activation of task programs. A task program is syntactically

similar to a Fortran subroutine (except for the keyword TASK CODE which is used instead

of SUBROUTINE) but has a different semantics: different tasks execute asynchronously

and independently as long as they are not synchronized. A task terminates if its execution
reaches the end of the associated task program code, or if it is explicitly killed. A task exists

during its lifetime, which is the period of time between spawning and termination.
The interface between a task and its environment is defined by the arguments passed to

the task and the structure of the associated SDAs. All arguments of a task except for status

variables must have intent IN. Common blocks and modules cannot be shared between

tasks: in particular, the spawning of a task creates a task-specific instance of every common

block in the task program, and a task has no access to objects belonging to a common block

associated with its parent. The semantics of modules is defined similarly.

Tasks are units of coarse-grain parallelism executing in their own address space and

operating on a set of system resources allocated to them at the time of their spawning, such

as machines and their associated processors, memory modules, and file space. The spawning
statement may contain an explicit resource request - it is then the system's responsibility

to allocate sufficient resources to satisfy this request - or it may let the system decide the

resource requirements.

2.1 Task Spawning

A task is created by executing a spawn-statement. The spawn statement identifies the task

program to be executed, together with an optional argument list and resource request:

SPAWN taskprogram-name ["(" argument-list")"] [ ON resource-request

The execution of a spawn statement

"* creates a new task,

"* passes a list of arguments to the task,

"* allocates resources to the task,

"* returns a unique integer value, the task identification*, and

"This value can be assigned to an integer variable and used in task expreusions (see Section 2.2) to gain
acces to the task.
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a initiates the execution of the task program.

The task in which the spawn statement is executed is called the parent of the newly

created task. The intrinsic function SELF yields the identification of the executing task.

The argument list may specify status variables that provide the user with information

concerning the success or failure of the spawning operation. If a spawn-statement fails (for

example, because its resource request cannot be met), its effect is empty, except for possible

implicit assignments to status variables which indicate the cause of the failure by returning

an error code.
All other arguments specified in a spawn statement must be of intent IN.
In the following, we will assume that the spawn statement is executed successfully, if

nothing to the contrary is said. The newly-created task will be denoted by T.

2.1.1 Resource Specification

Each task operates on a set of resources which are allocated at the time the task is created,

and deallocated at the time of its termination. Different tasks may execute on disjoint or

overlapping sets of resources.
If a resource-request is specified in a spawn statement, then it determines a set of resources

that must be allocated necessarily to the newly created task. In the absence of such a request

the system allocates resources it deems necessary to execute the task.
A resource request may specify the physical machine on which the task is to be executed,

along with additional requirements related to this machine. It is structured as follows:

[MACHINE "("physical-machine-spec")"] M ["," PROCESSORS "("processor-spec")"] [other-

resource-spec)...

The physical-machine-spec can be given either directly or indirectly:

9 A direct specification identifies a physical machine by a string with a system-dependent

meaning, for example,

MACHINE ('TOUCHSTONE DELTA...')

The concept of machine that we use here allows a broad interpretation: for example, it

may denote a specific vector machine, a workstation, a parallel architecture, a cluster
of workstations, or any of their components that can be used for the independent

execution of programs. It may also denote a class of machines with the system being

free to choose any specific machine from the class.
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* An indirect specification, for example MACHINE (TT), provides the identification of

a task (which must exist) or the name of an SDA (which must have been initialized).

In this case, the physical machine is the same as the machine allocated to TT.

For the following, assume that M is the machine on which task T is to be executed.

Any additional resource requirements specified in the spawn statement refer to components

of M. We will actually restrict our discussion here to the processor specification processor-

spec, which identifies the processor set to be associated with T. Other requirements, such as

those for main memory or file space, may have to be satisfied to render the spawn successful.

The processor set can be specified indirectly via a task identification or SDA name, with

analogous semantics as before. For a direct specification, the following options exist:

"* A processor reference. In this case, processor reference identifies a processor section of

M, which must be associated with the parent of T.

"* An integer expression, yielding a value k identifying the number of processors on ma-

chine M that are needed for the execution of the task.

If the expression is preceded by NEW and M was obtained by an indirect specification

referring to TT, then k "new" processors - in addition to those already associated with

TT - have to be allocated.

If any of the potential components of a resource request is missing, a system-dependent de-

cision is made.

We conclude this section with a note on the interface to Vienna Fortran and HPF proce-

dures. If T is spawned using a Vienna Fortran procedure, say Q, that contains a processor

declaration with a symbolic variable name in a dimension bound expression - for example,

PROCESSORS R(MN) - then these variables (M and N in the example) must be dummy

arguments of Q and explicitly supplied with proper actual arguments in the spawn statement.

The value respectively yielded by the functions $NP in Vienna Fortran and NUM-

BEROFPROCESSORS in HPF is determined by the number of processors allocated to

T.

Examples

* TI = SPAWN Q(KL, STAT = RSI)

A task is spawned by activating the task program Q with arguments K and L. The

task is executed on a system-defined machine and processor set. The execution of
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spawn yields an integer value for the identification of the task which is assigned to the

integer variable Ti. Status information regarding the execution of the task is returned
in variable RS1.

" T2 = SPAWN Q(K+I,L+I) ON MACHINE ('Intel iPSC860/64... ')
Similar to above, but here the machine on which the task is to be executed is specified

explicitly. The number of processors allocated to the task is determined by the system.

"* TS = SPAWN Q(K+I,L-I) ON MACHINE (T2), PROCESSORS (32)

This task is executed on the same machine as T21 it requires 32 processors (which may

or may not coincide with the processors allocated to T2).

"* T4 = SPAWN Q(KL) MACHINE (SELF), PROCESSORS (SELF)
This task is executed on the same machine and processor set as its parent.

"* T5 = SPAWN QQ(K-I,L,8,4) ON MACHINE (T2), PROCESSORS (NEW 32)

Similar to the last example, but in this case the task requires 32 processors in addition

to those already allocated to T2.

"* T6 = SPAWN QQ(K-I,L,8,4) ON MACHINE (T2), PROCESSORS (32)

This task is executed on the same machine as T2. Assuming that QQ contains a
processor declaration of the form PROCESSORS R(MN) and that the last two

dummy arguments of QQ are M and N, then the corresponding actual arguments

determine the shape of R.

"* T7= SPAWN QQ(1,2,4,8) ON MACHINE SELF, PROCESSORS RR(N1:N2,Ml:M2,K1:11

This task is executed on the same machine as its parent and requests the processor array

section RR(N1:N2,MJ:M2,K1:K2) to be allocated, where RR is a three-dimensional

processor array associated with the parent.

2.2 Task Termination

A task terminates if the execution of the associated subroutine comes to its end, or if its
execution is explicitly ended by a terminate statement. If a task terminates, then all its

children terminate as well.

The terminate statement has the form

TERMINATE [task-ezpression-list]
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A task expression is an integer expression whose value identifies an existing task. This

statement terminates all tasks specified in the task expression list. The keyword CHILDREN

identifies the set of all children that were spawned by the executing task and still exist.

If the list is empty, the task executing the statement is terminated.

Examples

TERMINATE T2, T3

This terminates T2 and TS.

TERMINATE

This terminates the task executing this statement (and its children).

TERMINATE CHILDREN

This terminates only the children of the task executing this statement.

2.3 Task Coordination

Tasks are coordinated by accessing methods in SDA objects. One basic mechanism provided

in the language is the condition clause, which is a boolean guard attached to a public

method of an SDA. This method can then be executed only when the evaluation of the

boolean expression yields true; if necessary, it is blocked until the condition is satisfied (see

Section 3).

Another mechanism is synchronization depending on task termination: WAIT tex1,..., tex.,

where the texi are task expressions, blocks the executing task until all tasks associated with

the texi have terminated. If the list of task expressions is preceded by ANY: WAIT ANY

tex1,... , tex,,, then the executing task waits until any one of the tasks associated with the

texi terminates.

Other mechanisms for more sophisticated coordination, including a low-level event-based

facility are currently under investigation and will be added to the language at a later point.

Example

Assume that Q1, Q2, and Q3 are task programs. Then

TTM = SPAWN Q1(...)

TT2 = SPAWN Q2(...)
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TTS = SPAWN QS(..
WAIT CHILDREN

causes the executing task to initiate the tasks TTM, TT2, and TTS, and then wait for the

completion of all three tasks (we assume that no other children exist). This has an effect

similar to the parbegin-parend construct used in other languages [6):

PARBEGIN QJ(...), Q2(...), QS(...) PAREND

3 Shared Data Abstractions

Tasks, as described in the last section, share information using Shared Data Abstractions

(SDAs). SDAs can be persistent in the sense that they allow program data to be stored in

external storage in a structured way rather than as just a sequence of bytes.

In the following, we distinguish between an SDA type which is a type specification for an

SDA and the SDA object itself. The latter refers to an instance of an SDA type. We also

distinguish between an SDA object and an SDA variable which is an internal program name

which denotes the SDA. A specific SDA object may have different internal names, e.g., in

different tasks. However, if an SDA object has been stored externally it will acquire a unique

external name. We use the term SDA for all three concepts interchangeably if the meaning

is clear from the context.

An SDA consists of a set of data structures along with the methods (procedures) which

manipulate this data. Tasks can share an SDA object and can asynchronously call the

associated methods. However, each call to the SDA has exclusive access to the data in the

instance. That is, only one method call associated with an SDA object can be active at one

time. Other request are queued and the calling tasks blocked until the currently executing

method completes its execution. The execution of individual methods can also be controlled

by the use of a condition clause as described below.

3.1 Specification of SDA Types

The SDA type specification syntax, modeled after the Fortran 90 module syntax, contains two

parts. The specification part consists of all the declarations, including types and variables,

while the subprogram part specifies the subprograms associated with the SDA type. As in

a Fortran 90 module, each subprogram declared within an SDA type has access to all the

entities declared in the SDA type through host association. The SDA type specification

extends the Fortran 90 module specification in several ways, as described in the following

subsections.
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SDA arguments

The SDA type header consists of the SDA type name along with a list of dummy arguments

similar to those of any Fortran 90 procedure. These arguments can be used to parameterize

the internal data structures of the SDA (including local arrays) The arguments of an SDA

must be of intent IN.

The SDA type header can also include an optional of-clause which is used to specify a

special argument, a type-name. This allows a type to be passed in as an argument to the

SDA which can then be used as a type specification within the SDA specification.

For example, the following code fragment represents the specification part of an SDA

type which provides a stack for communicating data between tasks:

SDA TYPE st. k (max) OF (T)

INTEGER max

TYPE (T) :: lifo(max)

INTEGER count

CONTAINS

END stack

Here, max is an integer argument which specifies the maximum size of the stack whereas

T is a type argument which allows lifo to be declared as an array of type T. Thus, as shown
in section 3.2, the same SDA type specification can be used to declare a stack of integers, a

stack of reals, etc. The name T designates a type and the only operations allowed on objects

of type T are: assignment, checking for equality and passing them as arguments to methods.

Accessibility of SDA entities

As in the case of a Fortran 90 module, the entities declared inside the SDA type are considered

public unless explicitly declared to be private using the keyword PRIVATE. The default can

be changed by a PRIVATE statement with an empty entity list. Then all entities are private

unless explicitly declared to be public using the keyword PUBLIC.

Note that public variables of the SDA are directly visible and accessible to all tasks

having access to the SDA. However, as in the case of method calls, access to these variables

is an atomic operation, and the task accessing the variable has exclusive access to the whole

SDA during the operation.
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SDA Methods

Public methods may be called by tasks having access to the SDA. Each public method

can have an associated condition clause which consists of a logical expression. The logical

expression controls the execution of the method, i.e., a call to the method is blocked until

the logi- 4l expression evaluates to true. The logical expression can be constructed using the

entities declared in the specification part of the SDA type along with the dummy arguments

of the associated method. However, the expression is restricted in that its evaluation is not

allowed to have any side effects which change the state of the SDA.

The condition clause is attached to the header of the procedure in the subprogram spec-

ification part, as shown in the following code fragment:

SDA TYPE stack (max) OF (T)
INTEGER max

TYPE (T), PRIVATE :: lifo(max)

INTEGER, PRIVATE count

CONTAINS
SUBROUTINE get (x) WHEN (count. gt. 0)

TYPE (T) x
x = lifo(count)

count = count - 1
end

SUBROUTINE put (x) WHEN (count . It. max)

TYPE (T) x

count = count + I

lifo(count) = x
END

INTEGER FUNCTION cur-count

cur-count = count

END

END stack
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Thus, in the above code fragment, lifo and count are private whereas the methods

cur-count, put and get are public. The method cur-count does not have an associated condi-

tion clause and hence can be executed whenever it has exclusive access to the SDA. However,

as specified in the condition block, the subroutine get can only be executed if count is greater

than zero. Similarly, the subroutine put can only be executed if count is less than max.

A public method cannot directly or indirectly call any other public method associated

with the same SDA.

Each SDA has three implicit public methods: INIT, LOAD and SAVE. The first two are

used to initialize an SDA while the third is used for saving the current state of the SDA to

external storage for later use. The three methods are described in Section 3.2.

Distribution of Data

Each SDA may have an optional processors statement, as for example HPF or Vienna Fortran

procedures, which allows the internal data structures of the SDA to be distributed across

these processors. The dummy arguments of the SDA methods can be distributed using the

rules applicable to any HPF procedure.

3.2 SDA Declaration and Use

An SDA type name can be used to declare SDA variable names of the type in a manner

similar to that used for Fortran 90 derived type definitions. The declaration consists of the

name for the SDA along with an of-clause if required by the specification. The following

code fragment declares two objects of type stack (see Section 3.1):

SDA (stack) OF INTEGER:: in~tstack

SDA (stack) OF TYPE (user.type) :: user-stack

The of-clause provides a type name to be associated with the type argument of the

SDA type. Thus, int-stack denotes an SDA which manipulates integers while user.stack will

manipulate objects of a user defined type, user-type.

The declaration statements create SDA variable names of the specified type in an unini-

tialized state. The SDA name must be initialized by associating it with an SDA object before

it can be used. This can be done using the INIT or LOAD methods, as shown below. Only

the task declaring an SDA variable can initialize the variable. An SDA name and the SDA

object it denotes exists as long as the program unit declaring it is active. The object can be

made persistent by calling the SAVE method to transfer the SDA data to external storage.
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An SDA variable declaration is not allowed to have the POINTER or ALLOCATABLE

attributes. Conceptually an SDA variable is a pointer to an SDA object. As a consequence,

all tasks to which an SDA object is passed have access to the same copy of the object and

hence can communicate with each other using the objectt.

An SDA can be passed as argument to procedures within a task and also to other tasks

as they are being spawned.

Entities declared in an SDA type specification are invokea using the same syntax as used

for derived type. Thus, inLstack%max accesses the value of the max variable associated with

the SDA int-stack. SDA methods can be invoked using a similar syntax:

sda-name%method-name "("arg-list ["," STAT = stat-variable] ")"

where sda-name is the name of the SDA object, method-name is the name of the method being

invoked and arg-list is the list of arguments required by the method. With any SDA method

call, the user can supply an optional status variable, preceded by the specifier STAT=. The

variable is set to a non-zero value if the method call fails for any reason (see generic SDAs

defined later in this subsection).

As noted before, each SDA has three implicit public methods: INIT, LOAD and SAVE.

The first two are used to initialize an SDA name while the last method saves the current

state of the SDA in external storage.

Initializing an SDA variable

INIT Method: The INIT method is used to initialize an SDA variable. It is called using

the input arguments as specified in the SDA type specification. The method creates an

instance of the SDA by allocating the required data structures and performing the default

initialization. Thus, the following call,

CALL int.stack%INIT( 100, STAT = init-status)

initializes the inLstack SDA to be of size 100. Again, the STAT variable init-status is set to

a non-zero value if the initialization fails for any reason, e.g., if there is not enough memory

to allocate the data structures.

An optional resource-request (as described in Section 2 for task spawning) allows the user

to specify resources to be used for the SDA. The user can also provide a method called INITin

the SDA type specification which includes code for initializing the internal data structures of

tNote that this does not conflict with the requirement that all task arguments be of intent IN. The SDA
variable that is pawed is intent IN, i.e., its value cannot be changed. However, method calls to the object
pointed to by the variable can change the state of the object.
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the SDA. This code is executed after the data structures for the instance have been allocated.

LOAD Method: The LOAD method call is used to "load" an SDA object with data which

had been "saved" earlier using the SAVE method. Each call to the LOAD method makes

an internal copy of the external data, leaving the external data untouched. The LOAD call

takes a string (constant or variable) as argument which identifies a saved SDA. For example,

in the following statement, data saved using the external name stack-sav is loaded into the

SDA object, user-stack.

CALL user-stack%LOAD( 'stack.sav' , STAT = init-status)

First, space for the internal data structures of the object is allocated, and then the data

from the saved SDA is loaded into the SDA object. As in the case of INIT, an optional

resource-request allows the user the specification of resources to be used for the SDA object.

Note that the type of the SDA object must match the type of the saved object. Two SDA

types are considered equivalent if a) the public variables of the SDA types are equivalent

in the same sense as the fields of two Fortran 90 derived types are equivalent, and b) the

method names and arguments of the public methods of the two types are the same.

Saving an SDA object

The SAVE method allows the user to save the state of the SDA on external storage for later

reuse. The method takes a string (constant or variable) as an optional argument which is

used as an external name for the saved object. The following statement saves the current

state of user-stack using the external name 'stacksav'.

CALL user-stack%SAVE( 'stack.sav' , STAT = savystatus)

If the external name denotes a currently saved object it is overwritten with the new state;

otherwise a new saved object is created. If the variable name had been initialized using a

LOAD call then the string argument may be omitted. In this case, the external name used
for the load is used for the save, overwriting the original data.

Generic SDA variables

The language allows the declaration of generic SDA variables whose type is determined by

the data saved on external storage. Thus, the declaration

SDA :: gen.sda
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specifies that gen.sda is an SDA name which will be associated with and SDA object of an

unnamed type. Such an variable can only be initialized using the LOAD method and thus

inherits the type of the loaded object. Note that using this facility implies runtime checks

to determine whether a method called with such an object exists and, if it does, whether

the argument types match. However, a judicious use of status variables provides a graceful

failure mode.

4 Example

In this section we describe, in relative detail, an example of an application expressed in

our language. The example chosen is the simultaneous optimization of the aerodynamic

and structural design of an aircraft configuration. By the standards of multidisciplinary

optimization (MDO) this is a comparatively simple example involving just two disciplines.

However, it does illustrate some of the capabilities of our system, as well as show some of

the software complexity of this class of applications, and also the potential for task level

parallelism.

Gridoen [

Figure 1: MDO Application

The structure of this program is shown in Figure 1. Here rectangles represent tasks, while
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ovals represent SDAs. Execution begins with the routine Optimizer, shown in Figure 2, which

creates the three SDAs shown, then spawns the other three tasks shown.

The functions of the three spawned tasks are as follows:

1. GridGen: the grid generator which takes the current geometry (aircraft configuration)

and produces a three-dimensional aerodynamics grid surrounding it, for use in the flow

solver.

2. FlowSolver: the flow solver which, beginning with the previous flow solution, co-, nutes

a new solution on the current aerodynamics grid.

3. FeSolver: the finite element solver which applies forces corresponding to the current
flow solution to the structure, to determine new structural defections.

In the simple variant of this optimization program shown, only one of these three tasks

is active at a time, with control flow passing sequentially between tasks. There are however

a number of alternatives having tasking-level parallelism, as discussed at the end of this

section.

Each of the tasks takes data from one or more SDAs, performs a sequence of computations

on it, then inserts the results into one or more other SDAs. For example, the grid generator

takes as input the current surface geometry, which is field deflected in SDA SurfaceGeom. It

then computes with this data, producing a new aerodynamics grid, which it inserts into SDA

AeroGrid. Similarly, the flow solver uses the current grid and previous solution in AeroGrid

to produce a new flow solution put in AeroGrid. The structure of the grid generator code is

shown in Figure 3; we omit the code for the flow-solver.

The structure of the two SDAs used here is shown in Figures 4 and 5. The SurfaceGeom

SDA contains the method GetFeModel, which returns a new finite element model for the

aircraft. We could have created a separate task finite element model to do this, but in this

case, generating the finite element model is trivial, so it can simply be a method in the

SurfaceGeom SDA.

Analogously, AeroGrid contains the method, SurfaceForces, which computes the pressure

loads and viscous stresses acting on the aircraft surface. Logically, one could think of this

as either a filter operating on the output of the flow solver, or as a part of the flow solver.

However, the former viewpoint is perhaps more natural, since the operation of extracting

surface forces is the same, independent of the flow solver used or the use being made of the

the surface forces.

The third spawned task is the finite element solver, shown in Figure 6. This task uses

the surface forces in the AeroGrid, together with the finite element model in SurfaceGeom to
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PROGRAM Optimizer
SDA (SurfaceGeom) Surf
SDA (AeroGrid) Grid
SDA (StatusRecord) Status
TYPE (surface) geom

I - read input arguments and initialize SDAs
CALL SurfINIT
CALL Grid%INIT
CALL Status%INIT

- spawn tasks
SPAWN FeSolver (Surf, Grid, Status, ... )

SPAWN GridGen (Surf, Grid, ... )

SPAWN FlowSolver(Grid, ... )

! - initialize geometry
geom = GenBaseGeom(...)
CALL SurfiPutBase(geom)

- outer loop
CALL Status Drag - Status DragDiff Drag
DO WHILE (DragDiff .gt. Epsilon)

geom = ImproveGeom(geom)
CALL SurfPutBase(geom)
CALL Status%GetDone
OldDrag = Drag
Drag Status%drag
DragDiff - Drag-OldDrag

END DO

- save SDAs if necessary

- kill all tasks
TERMINATE

STOP
END

Figure 2: Main program
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TASK CODE GridGen(Surf, GridSDA, ...)
SDA (SurfaceGeom) Surf
SDA (AeroGrid) GridSDA
TYPE (surface) geom
TYPE (FlowGrid) grid

DO WHILE (.TRUE.)
CALL SurfGetDeflected(geom)
grid = GenAeroGrid(geom)
CALL GridSDA%Putgrid(grid)

END DO
END GridGen

Figure 3: Grid generator

compute new deflections of the aircraft configuration. It also computes the change between
the new deflections and previous deflections, which it inserts in the SDA StatusRecord.

The SDA StatusRecord is shown in Figure 7. It is used to keep track of the current status
of the optimization process, the current drag prediction, and so forth. Control flow circulates

in the inner loop of FeSolver, GridGen, FlowSolver until the convergence criterion is met.

At this point, the FeSolver set the Done variable in the Status SDA allowing the Optimizer
to take control. The latter then decides whether to terminate the program or to produce a

new base geometry which when put in SurfaceGeom starts a new round of the inner loop.

5 Related Work

Task management has been a topic of research for several decades, particularly in the oper-

ating systems research community. A good survey of the issues can be found in [1]. However,

there has not been much attention given to the mechanisms required for managing control

parallel tasks, which may themselves be data parallel. In this section we discuss some of

these approaches.

Fortran M [61 extends Fortran 77 with a set of features that support message-passing,

according to a strictly enforced discipline. Processes - program modules encapsulating data

and code that are executed concurrently - can be combined via channels; each channel

establishes a one-to-one connection between typed ports, essentially representing a message

queuet. Communication is performed by sending and receiving from ports. Processes are

activated by executing a process block - a PARBEGIN/PAREND like construct - or by
t ln addition, many-to-one communication can be expressed.
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creating multiple instances in a process loop. The language has constructs for controlling the

location of process executions and distributing data in an HPF-like manner. By imposing

a FIFO discipline on message queues and guaranteeing a sequential semantics for output

arguments determinism is enforced.

Fortran M can be used to create and coordinate threads in a clean and structured

way. However, the relatively low level of abstraction associated with the message-passing

paradigm, together with the structure imposed on the use of channels and ports for the sake

of achieving determinism sometimes leads to difficulties expressing simple and useful com-

munication structures. Such examples include producer-consumer problems with multiple

producers and consumers accessing a bounded buffer, or the variants of the readers-writers

problem.

The Fx Fortran language extensions developed at CMU [10, 1 include parallel sections

that allow the concurrent activation of subroutines as tasks. Tasks communicate by sharing

arguments. Arguments can be passed to a task at the time of its activation, or received from

a task when it terminates. Each call that activates a task must be accompanied by input and

output directives that specify the shared objects. This provides the compiler with complete

information on the required communication.

Fx is well suited to an environment where tasks need to communicate only at the time of

spawning and termination, and where nested task-parallelism is not required. If tasks must

communicate during their execution, subroutines may have to be split at synchronization

points to obtain smaller program units that fit into this scheme. Moreover, this would clearly

induce task-spawning overhead.

LINDA [3] provides a virtual shared tuple space, to which read and write operations

can be applied. It represents a simple and easily usable parallel programming paradigm.

However, LINDA lacks the modularity that is required for structuring multidisciplinary

applications, and does not allow sufficient control of task execution and resource allocation.

SVM Fortran [2] is a set of extensions for Fortran 77 intended to program shared virtual

memory systems. among a large number of features, it provides support for fine-grained

control parallelism in a shared memory paradigm along with mechanisms to synchronize and

coordinate these tasks.

Other approaches which provide support for managing task parallelism at a high level

include occam [9], PVM [12], CC++ [4] and Strand [7]. Most of these approaches do not

address the issue of integrating task and data parallelism.
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6 Conclusion

Complex scientific applications, such as multidisciplinary optimization, provide opportunities

for exploiting multiple levels of parallelism; however, they also raise complex programming

issues. In this paper, we have presented language extensions which not only allow the

specification of parallelism but also provide support for software engineering issues which
arise when integrating codes from individual disciplines into a single working application.

The user has to explicitly specify tasks and manage concurrent tasks. We presume that

data parallelism within these tasks will be specified using an HPF-like approach. The user

controls the sharing of information between these tasks through Shared Data Abstractions,

which allow the task interfaces to remain independent of each other.

We are in the process of building a prototype implementation and will report the results

of these efforts in future papers.
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SDA TYPE Surf ace~eom.
TYPE (surface) base
TYPE (surface) deflected
TYPE (fe) FeModel

LOGICAL DeflectFull =.FALSE.

LOGICAL FeFull =FALSE.

PRIVATE base, deflected, FeModel,DeflectFull, FeFull

CONTAINS
SUBROUTINE PutBase(b)

TYPE (surface) b
base = deflected = b
CALL GenFeModel(b, FeModel)
DeflectFull =. TRUE.
FeFull =TRUE.

END

SUBROUTINE PutDeflected(d) WHEN .NOT. DeflectFull
TYPE (surface) d
DeflectFull =-.TRUE.

deflected =d

END

SUBROUTINE GetDefiected(d) WHEN DeflectFull
TYPE (surface) d
DeflectMul = .FALSE.

d = deflected
END

SUBROUTINE GetFeModel(f) WHEN FeFull
TYPE (fe) f

f = FeModel
FeFull = .FALSE.

END

END SurfaceGeom,

Figure 4: Surface Geometry SDA
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SDA TYPE AeroGrid ( s)
SDA (StatusRecord) s
TYPE (FlowGrid) grid
TYPE (FlowSoln) solution

LOGICAL GridFull = .false.

LOGICAL NewFlow = .false.
PRIVATE grid, solution, GridFull, NewFlow

CONTAINS
SUBROUTINE init

! code to initialize solution
END init

SUBROUTINE PutFlow(s)
TYPE (FlowSoln) s
solution = s
NewFlow = .TRUE.

END

SUBROUTINE GetFlow(s)
TYPE (FlowSoln) s
s - solution

END

SUBROUTINE GetSurfForces(f) WHEN NewFlow
TYPE (SurfForces) f
REAL drag
f - GenForces(FlowSoln)
drag = Surflntegral(f)
s%drag - drag

END

SUBROUTINE PutGrid(g) WHEN .NOT. Gridfull

END
SUBROUTINE GetGrid(g) WHEN GridFull

END

END AeroGrid

Figure 5: AeroGrid SDA
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TASK CODE FeSolver(Surf, GridSDA, Status, ... )

SDA (SurfaceGeom) Surf
SDA (AeroGrid) GridSDA
SDA (StatusRecord) Status
TYPE (fe) FeModel
TYPE (SurfForces) force

CALL Surf/oGetFeModel(FeModel)
DO WHILE (.TRUE.)

CALL GridSurfaceForces(force)
load = interp(force, FeModel)
solve(load, FeModel, deflect)
IF ( deflect .GT. tol ) THEN

CALL StatusSetDone
CALL SurftYGetFeModel(FeModel)

ELSE
CALL SurfPutDeflected (deflect)

ENDIF
END DO

END FeSolve

Figure 6: Finite Element Solver

SDA TYPE StatusRecord
REAL drag
LOGICAL Done = .FALSE.

PRIVATE ConvError, Done

CONTAINS
SUBROUTINE GetDone WHEN Done

Done = .FALSE.
END GetDone

SUBROUTINE SetDone WHEN NOT. Done
Done =. TRUE.

END SetDone

END StatusRecord

Figure 7: SDA for Status
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